On Smoothing and Inference for Topic Models, UAI 2009
abstract:
Latent Dirichlet analysis, or topic modeling, is a flexible latent variable framework for modeling high-dimensional sparse count data. Various learning algorithms have been developed in recent years, including collapsed Gibbs sampling, variational inference, and maximum a posteriori estimation, and this variety motivates the need for careful empirical comparisons. In this paper, we highlight the close connections between these approaches. We find that the main differences are attributable to the amount of smoothing applied to the counts. When the hyperparameters are optimized, the differences in performance among the algorithms diminish significantly. The ability of these algorithms to achieve solutions of comparable accuracy gives us the freedom to select computationally efficient approaches. Using the insights gained from this comparative study, we show how accurate topic models can be learned in several seconds on text corpora with thousands of documents.
Generative AI to quantify uncertainty in weather forecasting
-
Posted by Lizao (Larry) Li, Software Engineer, and Rob Carver, Research
Scientist, Google Research
Accurate weather forecasts can have a direct impact on ...
9 months ago
No comments:
Post a Comment